The Visual Perception of Human Locomotion

by

Ian M. Thornton,1 Jeannine Pinto,2 and Maggie Shiffrar2,3

1 Department of Psychology
 University of Oregon

2 Department of Psychology
 Rutgers University

3 UMR 6559, "Mouvement et Perception"
 CNRS - Université de la Méditerranée

In Press: Cognitive Neuropsychology

Correspondence
Maggie Shiffrar
UMR CNRS : Mouvement et Perception
Université de la Méditerranée
Faculté des Sciences du Sport
163, avenue de Luminy C.P. 910
13288 Marseille cedex 9 FRANCE
mag@laps.univ-mrs.fr
Tel: (33) 4 91 17 22 71 Fax : (33) 4 91 17 22 52
Abstract

To function adeptly within our environment, we must perceive and interpret the movements of others. What mechanisms underlie our exquisite visual sensitivity to human movement? To address this question, a set of psychophysical studies was conducted to ascertain the temporal characteristics of the visual perception of human locomotion. Subjects viewed a computer generated point light walker presented within a mask under conditions of apparent motion. The temporal delay between the display frames as well as the motion characteristics of the mask were varied. With sufficiently long trial durations, performance in a direction discrimination task remained fairly constant across ISI when the walker was presented within a random motion mask but decreased with ISI when the mask motion duplicated the motion of the walker. This pattern of results suggests that both low level and high level visual analyses are involved in the visual perception of human locomotion. These findings are discussed in relation to recent neurophysiological data suggesting that the visual perception of human movement may involve a functional linkage between the visual and motor systems.
Introduction

Any animal’s survival depends upon its ability to identify the movements of both prey and predators. As social animals, humans behave largely in accordance with their interpretations and predictions of the actions of others. If the visual system has evolved so as to be maximally sensitive to those factors upon which an animal’s survival depends (Shepard, 1984), then one would expect to find that human observers are particularly sensitive to human movement. Several decades of perceptual research support this prediction. In a classic study of the visual perception of human movement, Johansson demonstrated that human observers can readily recognize extremely simplified depictions of human locomotion (e.g., Johansson, 1973; 1975; Johansson, Von Hofsten & Jansson, 1980). Extending a technique first devised by Marey (1895/1972), Johansson created "point light walker" displays by filming human actors with small light sources attached to their major joints. By adjusting the lighting, the resultant film showed only a dozen or so moving points of light, as shown in Figure 1. Nevertheless, observers of these films report a clear and compelling perception of the precise actions performed by the point light defined actors. Importantly, observers rarely recognize the human form in static displays of these films (Johansson, 1973). Subsequent research has demonstrated that our perception of the human form in such displays is rapid (Johansson, 1976), orientation specific (Bertenthal & Pinto, 1994; Pavlova, 1989; Sumi, 1984), tolerates random contrast variations (Ahlström, Blake, & Ahlström, 1997), and extends to the perception of complex actions (Dittrich, 1993), social dispositions (MacArthur & Baron, 1983), gender (Kozlowski & Cutting, 1977; 1978), and sign language (Poizner, Bellugi & Lutes-Driscoll, 1981).

What neural mechanisms underlie the visual perception of human movement? Recent neurophysiological research suggests that relatively high level, integrative mechanisms may play a fundamental role in the visual analysis of human movement. For example, the superior temporal polysensory area (STP) of the macaque, which receives input from both dorsal and ventral visual pathways
(Baizer, Ungerleider & Desimone, 1991), contains cells that appear to be selectively attuned to precise combinations of primate forms and movements (Perrett, Harries, Mistlin, & Chitty, 1990). Neurons in this area have also been shown to respond to Johansson point light walker displays (Oram & Perrett, 1994). Furthermore, case studies of patients with extrastriate lesions sparing the temporal lobe demonstrate that individuals can lose their ability to perceive simple motion displays while retaining the perception of point light walker displays (Vaina, Lemay, Bienfang, Choi, & Nakayama, 1990; McLeod, Dittrich, Driver, Perrett, & Zihl, 1996).

A behavioral signature of high level visual processes is their dependence upon global display characteristics. More specifically, most models of the visual system are hierarchical in nature (e.g., Van Essen & DeYoe, 1995; Zeki, 1993). Visual analyses at the lower levels of this hierarchy are thought to occur within brief temporal intervals and small spatial neighborhoods. The results of these low level or "local" analyses are then passed onto and processed by higher level or more "global" mechanisms which process information across larger spatiotemporal extents. While local and global are difficult to define as absolute terms, most studies of the visual perception of human movement have defined local analyses as the computations conducted on individual points (joints) or point pairs (limbs). Global analyses are conducted over larger areas and generally involve half to an entire point light walker. In the temporal domain, local motion processes are thought to be restricted to a window of 50 ms or less (Baker & Braddick, 1985), while global motion processes may operate over much longer intervals.

Several psychophysical studies support the hypothesis that the visual perception of human movement depends upon a spatially global mechanism (e.g., Ahlström et al., 1997; Cutting, Moore, & Morrison, 1988). One approach to this issue involves masked point light walker displays. In this paradigm, observers view displays containing a point light walker that is masked by the addition of superimposed moving point lights. This mask can be constructed from multiple point-light walkers that are positionally scrambled so that the spatial location of each point is randomized. The size, luminance, and velocity of the points remain unchanged. Thus, the motion of each point in the mask is identical to the motion of one of the points defining the walker. As a result, only the spatially global configuration of the points distinguishes the walker from the mask. The fact that subjects are able to detect the presence as well as the direction of an upright point light walker "hidden" within such a scrambled walker mask implies that the mechanism underlying the perception of human movement operates over large
spatial scales (Bertenthal & Pinto, 1994). The spatially global analysis of human movement is further supported by studies of the aperture problem. Whenever a moving line is viewed through a relatively small window or aperture, its motion is ambiguous because the component of translation parallel to the line’s orientation can not be measured. As a result, the line's motion is consistent with an infinitely large family of different motion interpretations (Wallach, 1935). The visual system can overcome this measurement ambiguity or aperture problem through local motion analyses (restricted to small spatial regions) or global motion analyses (that link information across disconnected spatial regions). When viewing a walking stick figure through a multiple aperture display, observers readily perceive global human movement. Under identical conditions, however, observers default to local interpretations of moving non-biological objects and upside-down walkers (Shiffrar, Lichtey, & Heptulla-Chatterjee, 1997). This pattern of results suggests that the visual analysis of human locomotion can extend over a larger or more global spatial area than the visual analysis of other, non-biological motions.

While the mechanism underlying the visual perception of human locomotion appears to conduct global analyses over space, its temporal characteristics remain unclear. Psychophysical researchers commonly use the phenomenon of apparent motion to investigate the temporal nature of motion processes. In classic demonstrations of apparent motion, two spatially separated objects are sequentially presented within a certain temporal range so that they give rise to the perception of a single moving object. Early studies demonstrated that apparent motion percepts depend critically upon the temporal separation of the displays (Korte, 1915; Wertheimer, 1912). When displays are separated by relatively long inter-stimulus intervals (ISIs), long range apparent motion processes are thought to integrate information across the displays and to facilitate the perception of motion. On the other hand, when the frames in an apparent motion display are separated by brief temporal intervals (short ISIs), short range processes are thought to underlie motion percepts (Anstis, 1980; Baker & Braddick, 1985). Long range processes alone may conserve global cues to image structure such as object orientation (e.g., McBeath & Shepard, 1989), spatial frequency (e.g., Green, 1986), and perceptual grouping principles (e.g., Pantle & Petersik, 1980). While there has been much debate concerning the precise nature of apparent motion phenomena (Cavanagh, 1991; Cavanagh & Mather, 1989; Petersik, 1989, 1991), the traditional distinction between long and short range processes will be adopted here as it
provides a useful framework within which to discuss temporal manipulations involving a single class of stimuli.

The perception of human movement in apparent motion displays provides an intriguing demonstration of the difference between short range (temporally brief) and long range (temporally extended) motion processes. In all apparent motion displays, the figure(s) shown in each display frame can be connected by an infinite number of possible paths. Under most conditions, however, observers typically report seeing only the shortest possible path of motion (e.g., Burt & Sperling, 1981). Yet, when humans move, their limbs tend to follow curved rather than straight trajectories. Given the visual system’s shortest-path bias, will observers of human movement be more likely to perceive apparent motion paths that are consistent with the movement limitations of the human body or paths that traverse the shortest possible distance? This hypothesis has been previously tested with stimuli consisting of photographs of a human model in different positions created so that the biomechanically possible paths of motion conflicted with the shortest possible paths (Shiffrar & Freyd, 1990, 1993). For example, one stimulus consisted of two photographs in which the first displayed a standing woman with her right arm positioned on the right side of her head while the second photograph showed this same arm positioned on the left side of the woman’s head. The shortest path connecting these two arm positions would involve the arm moving through the head while a biomechanically plausible path would entail the arm moving around the head. When subjects viewed such stimuli, their perceived paths of motion changed with the Stimulus Onset Asynchrony (SOA) or the amount time between the onset of one photograph and the onset of the next photograph. At short SOAs, subjects reported seeing the shortest, physically impossible motion path. However, with increasing SOAs, observers were increasingly likely to see apparent motion paths consistent with normal human movement (Shiffrar & Freyd, 1990). Conversely, when viewing photographs of inanimate control objects, subjects consistently perceived the same shortest path of apparent motion across increases in SOA. Importantly, when viewing photographs of a human model positioned so that the shortest movement path was a biomechanically plausible path, observers always reported seeing this shortest path (Shiffrar & Freyd, 1993). Thus, subjects do not simply report the perception of longer paths with longer presentation times. Moreover, observers can perceive apparent motion of non-biological objects in a manner similar to apparent motion of human bodies. However, these objects must contain a global hierarchy of orientation and position cues resembling the entire
human form before subjects perceive human-like paths (Heptulla-Chatterjee, Freyd, & Shiffrar, 1996). This pattern of results suggests that human movement is analyzed by long range motion processes which operate over large temporal intervals.

However, this conclusion appears inconsistent with the results of another series of apparent motion experiments (Mather, Radford & West, 1992). These intriguing studies involved the presentation of synthesized point light displays depicting the sagittal view of a person walking within a mask of randomly moving point lights. In some of these studies, observers reported whether the animated walker faced leftward or rightward in the picture plane. To create conditions appropriate for both long range and short range apparent motion, blank frames were added between the frames containing the masked walker. When the time between successive point light walker frames (ISI) reached or surpassed 48 ms, observers were unable to discriminate the two directions of walker motion. Since subjects could only perform the motion discrimination task under short range apparent motion conditions, their perception of human movement appears to have depended upon local motion analyses. This finding suggests that the mechanism underlying the visual perception of biological motion analyses information within small temporal windows.

Thus, it is not yet clear whether the visual perception of human locomotion involves temporally local or global processes. Because the above temporal studies differ significantly in methodology, their apparently conflicting results can not be unambiguously interpreted. Did the difference in results arise from methodological differences in display form, subject task, masking, or display duration? The goal of the following experiments was to resolve this interpretation limitation and thereby to provide a better understanding of the mechanism underlying this perceptual behavior. These studies were motivated by the following assumption. If the neural mechanism subserving the visual perception of human locomotion operates over extended temporal windows, then subjects should be able to perform perceptual judgments of human locomotion under long range apparent motion conditions.

Experiment 1

Trial Duration

Why were subjects in the experiments of Mather *et al.* (1992) unable to determine a point light walker’s direction of motion under long range apparent
motion conditions? One possible reason concerns overall display duration. Johansson (1976) found that naive observers could identify a human form and its action from a point light walker displayed for 200 ms. However, the correct identification of a point light walker presented within a mask requires longer display durations. Specifically, performance in a direction discrimination task can fall to chance levels when masked point light walkers are presented for less than 800 ms (Cutting et al., 1988). In the experiments of Mather and his colleagues, the masked point light walker was visible for as little as 240 ms per trial. On the other hand, in the studies by Shiffrar and her colleagues (Heptulla-Chatterjee et al., 1996; Shiffrar & Freyd, 1990, 1993; Shiffrar et al., 1997), human movement displays were usually presented for several seconds. Thus, one possible explanation is that the use of brief display durations may lead to an underestimation of observers’ perceptual capacities to interpret human movement. To examine this possibility, a modified replication of one of the studies conducted by Mather et al. (1992) was undertaken. Briefly, subjects performed a two alternative forced choice task in which they discriminated between rightward and leftward facing point light walkers presented within a mask. The experimental modification involved the use of both long duration and short duration trials. If poor performance results from the use of excessively brief display durations, then performance in the long duration trials should be superior to performance in the short duration trials. Secondly, if above chance levels of performance are found, then the results of this experiment can be used to test whether low level or high level motion analyses are involved in the perception of human movement. More specifically, if performance at all ISIs is mediated exclusively by short range motion processes, then performance should fall to chance levels with ISIs that extend beyond the temporal window for short range analyses; namely, ISIs greater than approximately 50 ms. If, however, the perception of human locomotion involves temporally extended motion analyses, then performance should remain well above chance with increases in ISI.

Method

Subjects

Three experienced psychophysical observers participated in this experiment. All observers had normal or corrected to normal vision. One subject was an author whereas the remaining subjects were naive with regard to the purpose of this study.
Apparatus

All stimuli were displayed on a Macintosh 21” (40 x 30 cm) RGB monitor with a refresh rate of 75 Hz and a 1152 x 870 pixel resolution. Monitor output was controlled by a Macintosh Quadra 950. A chin rest was used to fix the subjects’ viewing distance at 90 cm from the monitor. The stimuli were presented in a 6.3° by 6.3° window positioned in the center of the monitor. This window size closely replicated that used by Mather *et al.* (1992). This apparatus was used in both of the experiments reported here.

Stimuli

The stimuli were generated by modifying, in Think C version 7.0, a classic point light walker algorithm (Cutting, 1978) together with a simultaneously presented mask of randomly moving dots (Cutting *et al.*, 1988). Each animation frame consisted of 77 identical black dots displayed against a uniform, middle gray background. Eleven of these dots defined the walker while the remaining 66 dots defined the mask. Every dot, whether it belonged to the mask or the walker, was a 5 x 5 pixel square that subtended 6.1 min arc.

The simulated walker was displayed in profile as shown in Figure 2. The dots that defined the walker were positioned on the simulated head, near shoulder, both elbows, both wrists, near hip, both knees, and both ankles of the walker (Cutting, 1978). As in previous masked point light walker studies, the walker was always displayed with all 11 dots. That is, dots did not disappear when they would normally be occluded by the walker’s torso or limbs. The removal of this natural occlusion cue minimized non-motion related cues to the location of the walker in the mask (Cutting *et al.*, 1988; Mather *et al.*, 1992; Bertenthal & Pinto, 1994). The mask dots themselves were placed randomly around the walker on a frame by frame basis. As a result, the dots defining the walker and the mask could only be distinguished from each other by their motion. Mather *et al.* (1992) nicely described these stimuli, when set in motion, as resembling a "figure striding through a light snowstorm".

--

Insert Figure 2 About Here

--
The walker figure subtended 4.6° in height (head to ankle) and 2.4° in width at the most extended point of the step cycle. A complete stride cycle (i.e., the sequence of movements that occurs between two consecutive repetitions of a body configuration) was achieved in 40 animation frames. The duration of each frame was fixed at 40 ms. As a result, when these frames were presented in immediate succession, a walking speed of 38 strides per minute was simulated. This speed falls within the range of 30 - 70 strides per minute associated with human walking under normal conditions (Inman, Ralston & Todd, 1981). The walker figure did not translate across the screen but rather appeared to walk in place as if on a treadmill. On half of the trials, the walker faced and walked to the right while on the other half of the trials, the walker faced and walked to the left. The horizontal and vertical position of the walker was randomized within the central display area on a trial by trial basis. The walker’s position was constrained by the need to ensure that none of the dots defining the walker approached or exceeded the boundary of the display area. The starting position within a stride cycle (e.g., legs far apart or close together) was also randomized on each trial. These display manipulations ensured that subjects would not be able to identify the walker configuration simply by its presentation at a particular location or during a specific animation frame.

To manipulate the ISI, and thereby create long range and short range apparent motion, a blank frame was inserted between each of the animation frames. This blank frame contained no dots and was the same uniform gray as the background in the animation frames. Across trials, the duration of these blank frames was varied from 0 ms (no blank frame) to 120 ms in 15 ms increments. This yielded a total of nine different Inter-stimulus Intervals (ISIs) of 0, 15, 30, 45, 60, 75, 90, 105 and 120 ms.

There were two types of trials. A short duration trial consisted of 20 animate frames and corresponded to half of a walker’s stride cycle. This short duration trial condition was selected in order to replicate the findings of Mather et al. (1992). Long duration trials consisted of an 80 frame sequence and allowed for the presentation of two complete strides. Within each trial duration, the full range of ISIs was used. Trial duration was always equal to or greater than 800 ms. More precisely, the overall duration of the 20 frame trials was 800 ms when the ISI equaled 0 ms and 3.2 s when the ISI equaled 120 ms. The 80 frame trials had durations as brief as 3.2 s and as long as 12.8 s when the ISI was 0 or 120 ms, respectively.
Procedure

Subjects were seated in front of the display monitor and were told that they would see a point light walker within a mask. They were instructed to determine, on each trial, if the walker’s direction was to the left or right and then to press one of two buttons on a computer keyboard to indicate their decision. Responses could only be recorded after an animation sequence was completed. Subjects initiated the next trial by pressing another button on the keyboard. No feedback was provided during the practice or experimental sessions.

According to a within subjects design, each subject completed four blocks of short duration trials and four blocks of long duration trials. These eight blocks were intermixed and their order was counterbalanced across subjects. Each block contained 10 trials at 9 different ISIs for a total of 90 trials. On average, subjects completed one block of trials in approximately fifteen minutes. The order of the trials within each block was randomized independently for each subject. All subjects completed 18 practice trials before beginning each new block of experimental trials.

Results

The results, shown in Figure 3, are plotted as the mean percentage of trials during which subjects correctly reported the walker’s direction at each ISI level in both the short (20 frame) and long (80 frame) trial duration conditions. A 2 (Condition) x 9 (ISI) repeated measures ANOVA was used to analyze these data. A significant main effect of Condition, $F(1,2) = 23.07, \text{MSE} = 33.8, p < .05,$ was identified, with responses to 80 frame trials being more accurate ($M = 96.85, SD = 4.01$) than responses to 20 frame trials ($M = 89.26, SD = 11.16$). While there was also a significant main effect of ISI, $F(8,16) = 4.7, \text{MSE} = 40.5, p < .01,$ this effect should be interpreted in the light of a Condition x ISI interaction, $F(8,16) = 3.12, \text{MSE} = 22.2, p < .05.$ To further explore this interaction, post-hoc contrasts were used to compare Condition means at each level of ISI. This analysis revealed a significant divergence in performance by 60 ms, $F(1,16) = 4.7, \text{MSE} = 22.2, p < .05,$ with the short duration trials remaining significantly below the long duration trials for all ISIs beyond this point. Separate repeated measures ANOVAs confirmed this pattern of results with a strong main effect of ISI for the 20 frame condition, $F(8,16) = 4.37, \text{MSE} = 54.75, p < .01,$ but only a marginal effect for the 80 frame condition, $F(8,16) = 2.54, \text{MSE} = 8.0, p = .054.$ Finally, it is important to note that even the poorest performance, which
occurred in the 20 frame condition when the ISI equaled 120 ms, was still significantly above chance ($t(2) = 6.55, p < .01$).

Discussion

The results of this experiment clearly demonstrate that observers can perceive human locomotion under both long range and short range apparent motion conditions. More precisely, in the 20 frame condition, ceiling levels of performance were recorded when the temporal delay or ISI between the frames displaying the masked point light walker was less than 60 ms. This value is consistent with the 0 to 50 ms temporal window associated with short range apparent motion processes (Baker & Braddick, 1985). Beyond this point, performance dropped with increasing ISIs. This pattern of results replicates those of Mather et al. (1992, Exp. 2) in which direction discrimination performance dropped with ISIs greater than 48 ms. However, in the present experiment, performance in the 80 frame trial duration condition remained relatively flat across increases in ISI. Since the long duration trial condition was constructed by simply increasing the number of walker frames from 20 to 80, the responses of low level motion detectors should have remained unchanged. Nonetheless, subjects were better able to determine the point light walker’s direction of motion under long range apparent motion conditions when trial durations were extended beyond those used by Mather et al. (1992).

While the pattern of results from the short trial duration condition is very similar to the pattern reported in Mather et al. (1992), absolute performance differs. Subjects in the current experiment performed the direction discrimination task more accurately than subjects in the direction discrimination experiment of Mather et al. (1992). This difference may reflect our use of only trained psychophysical observers. However, we have since replicated this same pattern of results with more than twenty naive observers (Pinto, Thornton, & Shiffrar, 1998). Superior overall performance may have also resulted from differences in frame duration. Each walker frame was displayed for 40 ms in the current experiment but for only 24 ms in the direction discrimination experiment by Mather and his colleagues. Thus, superior performance with longer frame durations is completely consistent with the
hypothesis that subjects perform relatively poor perceptual judgments of masked human locomotion when displays are only briefly presented (Cutting et al., 1988).

Previous investigators of the visual perception of biological motion have used masked point light walker displays to examine the spatial nature of this perceptual process. The results of their studies suggest that the perception of human movement involves spatially global analyses (Bertenthal & Pinto, 1992; Cutting et al., 1988). In earlier studies of the temporal characteristics of biological motion perception, researchers have varied the delay between photographs of a human model in different positions. The results of these studies support the existence of a temporally global mechanism (Shiffrar & Freyd, 1990; 1993). The current methodology involved a combination of these strategies since a temporal delay was inserted between frames depicting a masked point light walker. The current results therefore suggest that subjects can make subtle perceptual judgments about human locomotion even when these judgments require visual analyses that are global across both space and time. This finding is consistent with the hypothesis that a high level mechanism, rather than low level motion processes alone, underlies the visual perception of human movement.

However, it is important to note that the results of this experiment can not be convincingly interpreted as exclusively representing a high level mechanism. That is, if performance in the long trial duration condition were solely the function of a temporally global analysis, then performance should have been independent of ISI. Yet, performance varied with ISI. One possible interpretation of this result is that local motion analyses may be involved in the perception of human movement. The goal of the following experiment was to determine more precisely whether low level motion analyses play a role in the visual perception of human movement.

Experiment 2
Mask Complexity

The mask used in Experiment 1 and in Mather et al. (1992) consisted of randomly moving points. Thus, the position of each point in the mask was uncorrelated from frame to frame. Since the walker points had pendular trajectories that simulated normal human locomotion, the position of these points was correlated across frames. As a result, the motions of the individual points of the mask and walker differed. These local differences were therefore available to
low level motion detectors and may have contributed to the detection of the walker in the mask. Therefore, a different type of mask is needed to eliminate the utility of low level motion processes.

Previous research has shown that subjects can accurately discriminate the direction of a point light walker in a mask even when the motion of each mask point mimics the motion of a walker point (Bertenthal & Pinto, 1994). These so-called "scrambled walker" masks are constructed by duplicating a point light walker several times and then scrambling the starting position, but not the motion trajectory, of each point. This process yields a mask which might, for example, consist of points corresponding to seven left wrists plus seven right wrists plus seven left ankles plus seven heads, etc., and each having a randomly determined location within the 2D plane of the mask. Only the configuration of points that define the walker can be used to distinguish the walker from the mask. Thus, such "scrambled walker" masks more thoroughly camouflage human locomotion than "random dot" masks (Cutting et al., 1988). In other words, "scrambled walker" masks can be used to eliminate or drastically reduce the influence of low level motion processes in the perception of point light walkers.

If the visual analysis of human locomotion is global across both space and time, then subjects should be able to interpret a point light walker within a scrambled walker mask even under conditions of long range apparent motion. To test this prediction, subjects performed a modified replication of Experiment 1 in which the same point light walker was presented within a scrambled walker mask rather than a random dot mask.

Method

The same three psychophysical observers from Experiment 1 served as subjects in this experiment. As before, two of the subjects were naive to the hypothesis under investigation.

The subjects’ task in this experiment was identical to that of the previous experiment. The displays were also identical except for the motion trajectories of the dots making up the mask. In the previous experiment, the mask dots moved randomly. In this experiment, each dot in the mask had a motion trajectory that was identical to the trajectory of one of the dots defining the walker. This "scrambled walker" mask was created by generating six copies of the walker within the display area. The initial vertical and horizontal positions of each dot were then
randomized within the display window. As a result, each mask dot had the same velocity as one of the walker dots but bore no predictable spatial relationship to any other dot. As before, the mask dots also had the same size, color, and luminance as the walker dots. The experimental procedure replicated that of Experiment 1.

Results

The results, shown in Figure 4 as the mean percentage of trials during which subjects correctly reported the walker’s direction at each ISI level, were analyzed in a 2 (Condition) x 9 (ISI) repeated measures ANOVA. This yielded a significant main effect of Condition, $F(1,2) = 51.12$, $MSE = 32.1$, $p < .05$, with responses to 80 frame trials being more accurate ($M = 74.72$, $SD = 13.36$) than responses to 20 frame trials ($M = 63.7$, $SD = 11.82$). Unlike in Experiment 1, there was no Condition x ISI interaction. Separate analysis of the data from the two conditions revealed only a marginal main effect of ISI for the 20-frame condition, $F(8,16) = 2.46$, $MSE = 61.01$, $p = .06$, and a significant main effect of ISI for the 80-frame condition, $F(8,16) = 6.13$, $MSE = 53.65$, $p < .01$. Polynomial contrasts revealed that this main effect had a strong linear component, $F(1,16) = 40.13$, $MSE = 53.65$, $p < .001$, reflecting a gradual drop in performance between the 0 ms ($M = 85.83$, $SD = 12.58$) and 120 ms ($M = 60.83$, $SD = 7.2$) ISI increments. T-tests indicated that performance in the 20 frame condition remained at chance levels (50%) for all ISI increments except 0 and 30 ms. In contrast, in the 80 frame condition, performance remained significantly above chance (all ps $< .05$) for all ISIs except those of 105 ms ($p = .13$) and 120 ms ($p = .06$).

Discussion

Three general conclusions are suggested by the results of this study. Firstly, performance in this direction discrimination task is better at long (80 frame) trial durations than at short (20 frame) trial durations. This finding further supports the hypothesis that poor performance in this task can stem from the use of trials presented over insufficient durations. Secondly, performance in the long duration trial condition suggests that subjects can integrate motion correctly over large spatial
and temporal extents in the analysis of human locomotion even when masking renders local motion signals uninformative. This finding clearly suggests that high level or temporally global motion analyses are involved in the visual perception of human movement. Finally, comparison with the results of Experiment 1 demonstrates that the perception of a point light walker is more difficult when it is presented within a mask of identically moving points than in a mask of randomly moving points. Local differences in motion trajectories are available in random dot masks but not in scrambled walker masks. These local motion differences may account for the performance differences between Experiments 1 and 2. This interpretation is further supported by the results of the long duration trial condition in this experiment. While performance was generally above chance, it also dropped with increasing ISI. The influence of low level motion detectors is thought to decrease as temporal delays increase (e.g., Baker & Braddick, 1985). If so, when considered together, these results suggest that both low level (Mather et al., 1992) and high level (Bertenthal & Pinto, 1992; Shiffrar & Freyd, 1990; 1993) visual mechanisms may be involved in the visual perception of human locomotion.

General Discussion

The goal of this behavioral research project was to develop a better understanding of the mechanisms underlying the visual interpretation of human movement by examining the temporal characteristics of locomotion perception. In two experiments, subjects viewed Johansson-like point light walkers presented within a mask of moving points and reported the walker’s direction of motion. Apparent motion displays were created by inserting blank frames of variable duration (or ISIs) between the walker frames. In Experiment 1, subjects viewed point light walkers within a mask of randomly moving points over short and long trial durations. When only 20 walker frames were presented, performance dropped with ISIs greater than 60 ms. This performance pattern replicates earlier findings (Mather et al., 1992). When the same masked walker was shown for 80 frames per trial, near ceiling levels of performance were found across variations in ISI. This finding, that longer trial durations can improve performance, supports previous demonstrations that subjects report the perception of human movement under long range apparent motion conditions (Heptulla-Chatterjee et al., 1996; Shiffrar & Freyd, 1990; 1993). When considered together, the results of this experiment suggest
that the perceptual processes tapped by point light walker displays can operate over extended spatio-temporal neighborhoods. Such global behavior is generally considered to be a signature of mechanisms residing within relatively late stages of the visual system.

In Experiment 2, the point light walker was presented within a "scrambled walker" mask rather than in a "random dot" mask. As a result, the motion trajectories of the points defining the mask were identical to the motion trajectories of the walker points. Under these conditions, subjects generally performed at chance levels in the short trial duration condition. In the long trial duration condition, performance was generally above chance and depended upon ISI. Above chance performance with ISIs greater than 50 ms is thought to reflect high level motion processes (Anstis, 1980; Baker & Braddick, 1985). Such processes may allow for attentional tracking of the point light walker over extended temporal intervals (Cavanagh, 1992; Lu & Sperling, 1995; Thornton, Rensink, & Shiffrar, 1998). Interestingly, neural representations of action are influenced by attentional processes (Decety, 1996). However, other aspects of the results of this experiment cast serious doubt on the hypothesis that the visual perception of human movement depends exclusively on high level neural processes. Firstly, in the long trial duration conditions, performance was at ceiling when random dot masks were used but significantly below ceiling when scrambled walker masks were employed. Since scrambled walker masks effectively eliminate the utility of local motion analyses, sub-optimal performance with these masks can be attributed to the loss of input from local analyses. Secondly, in the long trial duration condition of Experiment 2, subjects could not accurately judge the walker’s direction at long ISIs. This finding further supports the importance of temporally restricted, or low level, motion analyses. Thus, the results of these experiments suggest that both local and global processes contribute to our visual interpretation of the movements of others.

Since low level motion detectors may serve as the gateway to the perception of object motion, it might not be surprising that they play an important role in the visual perception of human movement. Indeed, models involving strictly local computations do capture some aspects of the visual perception of human movement (Hoffman & Flinchbaugh, 1982; Webb & Aggarwal, 1982). However, such approaches can not explain the orientation specificity (Ahlström et al., 1997; Bertenthal & Pinto, 1994; Pavlova, 1989; Sumi, 1984) nor the spatio-temporal limits within which we can visually identify a moving human. It is also unclear how such models can be extended to account for our ability to visually classify different
human actions (Dittrich, 1993; MacArthur & Baron, 1983). Thus, the critical question becomes, what is the nature of the high level mechanism(s) involved in the visual perception of locomotion? Neurophysiological and case studies suggest that area STP may play an important role in the visual perception and/or interpretation of human movement (McLeod et al., 1996; Oram & Perrett, 1994; Perrett et al., 1990; Vaina et al., 1990). Since this region receives convergent input from the dorsal and ventral pathways (Baizer et al., 1991), it may be involved in the integration of form and motion cues (Perrett et al., 1990). This integration may contribute to the visual perception of a moving human form across space and time.

Another line of research suggests that the visual perception of human movement may involve a functional linkage between the perception and production of motor activity (Viviani & Stucchi, 1992; Viviani, Baud-Bovy, & Redolfi, 1997). In other words, the perception of human movement may be constrained by knowledge of human motor limitations (Shiffrar, 1994; Shiffrar & Freyd, 1990; 1993). Given our extensive visual exposure to people in action, it is possible that this implicit knowledge may be derived from visual experience. However, physiological evidence increasingly suggests that motor experience may be crucial to this visual process. For example, "mirror" neurons in monkey premotor cortex respond both when a monkey performs a particular action and when that monkey observers another monkey or a human performing that same action (Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). Recent imaging data clearly suggest that, in the human, the visual perception of human movement involves both visual and motor processes. That is, when subjects are asked to observe the actions of another human so that they can later imitate those actions, PET activity is found in those brain regions involved in motor planning (Decety, Grezes, Costes, Perani, Jeannerod, Procyk, Grassi, & Fazio, 1997). Thus, visual observation of another individual’s movement can lead to activation within the motor system of the observer.

Interestingly, action observation without the intent to imitate does not consistently engage motor planning areas (Decety et al., 1997). Intentionality is known to play a fundamental role in the production of human movement (Bonnard & Pailhous, 1991; 1993; Laurent & Pailhous, 1986). Indeed, intentionality, or the ability to actively modify muscle activity, marks the critical difference between animal and object movement. Since intentionality controls both the motor production and visual analysis of human movement, it may serve to connect the two processes. This proposed linkage is consistent with the hypothesis that the
perception of human movement may differ from the perception of other complex, but non-intentional, motions. Taken together, these intriguing results suggest that we may understand the actions of others in terms of our own motor system. The high level visual mechanism suggested by the results of the current behavioral experiments may well reflect this linkage between the visual and motor systems.
References

Green, M. (1986). What determines correspondence strength in apparent motion?
Vision Research, 26, 599-607.

Acknowledgments

This work was funded by NIH:NEI grant 099310 to the third author and NATO Collaborative Research Grant CRG970528 (with J. Pailhous and M. Bonnard of the CNRS at the Université de la Méditerranée) to the second and third authors. Some of these results were presented at the 1995 Congress on Perception and Action in Marseille, France and at the 1996 ARVO Conference. We thank James E. Cutting for kindly providing an updated version of his walker code.
Figure Captions

Figure 1.
Four static views of a point light walker. The outline of the human body, shown in the first frame, is never shown in experimental stimuli. When presented statically, these displays are difficult to interpret. However, when set in motion, observers easily organize the complex patterns of point motion into a coherent perception of human locomotion.

Figure 2.
The creation of a masked point light walker display. Frame A illustrates a walker with eleven gray points fixed to each of the major body joints and the head. Frame B displays the gray point light walker within a mask of black points. In the experimental stimuli, the walker points and mask points are identical, as shown in Figure C. The walker can be located within dynamic but not static displays.

Figure 3.
The results of Experiment 1. The results are collapsed across subjects. Performance in the long duration trial condition, indicated by the filled squares, remains high across variations in the Inter-Stimulus Interval. Performance in the short duration trial condition, shown by the empty circles, decreases with increasing temporal delays. The error bars represent the standard error of the mean.

Figure 4.
The results of Experiment 2 collapsed across subjects. Performance in the long duration trial condition (filled squares) is above chance for ISIs less than 90 ms and superior to performance in the short duration trial condition (empty circles). Error bars represent the standard error of the mean.
Figure 2
Figure 3
Figure 4